
Live and Global Consistency Checking in a Collaborative
Engineering Environment∗

Michael Alexander Tröls
Johannes Kepler University

Linz, Austria
michael.troels@jku.at

Atif Mashkoor
Johannes Kepler University

Linz, Austria
atif.mashkoor@jku.at

Alexander Egyed
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

ABSTRACT
During software and systems engineering, engineers have to rely
on different engineering tools in order to capture different kinds
of artifacts, such as requirement specifications, design models or
code. Even though the artifacts that engineers capture with these
tools are interdependent, the tools have limited abilities to detect
inconsistencies among them. Today no approach exists that is able
to provide live inconsistency feedback of engineering artifacts –
captured and maintained in different engineering tools – without
disrupting the engineers’ workflow. The work presented in this
paper introduces a novel approach for live, multi-tool, consistency
checking where engineers continue to use their respective tools
and receive inconsistency feedback across their tools’ artifacts in a
live manner. The approach uses a cloud-based engineering platform
to replicate the tool’s artifacts and to detect inconsistencies there.
Within the cloud, engineers may link these artifacts and define
cross-tool consistency rules. The approach was validated through
an empirical study and two industrial case studies to demonstrate
usefulness, correctness and scalability.
ACM Reference Format:
Michael Alexander Tröls, Atif Mashkoor, and Alexander Egyed. 2019. Live
and Global Consistency Checking in a Collaborative Engineering Environ-
ment. In The 34th ACM/SIGAPP Symposium on Applied Computing (SAC
’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3297280.3297454

1 INTRODUCTION
Contemporary software and systems engineering is a process that
involves a wide range of tools, bringing together knowledge of
many engineers. In doing so, engineers create a wide variety of
engineering artifacts, ranging from requirements to design model
specifications and code. With increasing number of tools and engi-
neers involved, the number of interdependent engineering artifacts
grows non-linearly. Maintaining consistency among artifacts of
∗This work is partially supported by the Austrian Science Fund (FWF): FWF P 25513-
N15 as well as P 31989-N31, the JKU Linz Institute of Technology (LIT), the Austrian
Ministry for Transport, Innovation and Technology, the Federal Ministry of Science,
Research and Economy and the Province of Upper Austria in the frame of the COMET
center SCCH.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297454

these separate tools is a challenging task [9]. We speak of global
consistency checking.

Most approaches towards consistency checking focus on individ-
ual tools or documents. Unless engineering artifacts are merged and
combined into a single tool or document, the existing work is not ca-
pable of detecting inconsistencies among artifacts of different tools,
e.g., between UML models and source code or hardware designs.
Unfortunately, merging artifacts is time consuming and disruptive.
Thus engineering artifacts across tools are rarely checked for global
consistency and get out-of-sync. This means that documentation
does not correspond to implementations, the design is no longer in
line with the requirements specifications, or code does not match
its model specifications.

Global consistency checking, which takes into account the sum
of all artifacts captured in all tools used in a project, has key differ-
ences compared to state-of-the-art tool-centric or document-centric
consistency checking technologies. It navigates across artifacts of
different tools and handles conflicting artifact changes due to the
concurrent use of different tools by engineers on the basis of glob-
ally defined consistency rules.

This paper thus presents an approach for live, global consistency
checking. It utilizes an engineering cloud which mirrors relevant
parts of the engineering artifacts within engineering tools. It cen-
tralizes consistency checking and reduces the overall memory and
computation time. Tools merely need to synchronize engineering
artifacts to the cloud as engineers change them and receive incon-
sistency feedback live. The approach also lets engineers define links
among artifacts in the cloud so that the consistency checker may
navigate them. Freely definable link types let engineers connect
artifacts of different tools. Consistency rules, consistency checking
results and links are stored in the cloud using the same uniform
representation that artifacts are stored in. A consistency checker
can thus look for inconsistencies beyond the traditional boundaries
of a single engineering tool. As a result consistency checking be-
comes global and is no longer bound to a single tool or limited to
specific kinds of artifacts. Since all consistency checking is done
in the cloud, the engineers can continue working with their tools
without interruption.

Our approach was implemented as a cloud service utilizing the
DesignSpace [5] infrastructure. In the cloud, merely one consistency
checker implementation is needed rather than many implemen-
tations for each and every tool. Given that the cloud computes
consistency feedback once for all artifacts, it is in fact more effi-
cient than tool-centric solutions where each tool would have to
compute the consistency feedback separately (to the extent they are
capable of doing that). Empirical evidence demonstrates scalability

https://doi.org/10.1145/3297280.3297454
https://doi.org/10.1145/3297280.3297454

SAC ’19, April 8–12, 2019, Limassol, Cyprus Michael Alexander Tröls et al.

Figure 1: Sequence diagram of the language selection pro-
cess

and usability across a wide set of tools. Two industrial case studies
provide further evidence of usefulness.

The rest of this paper is organized as following: Section 2 presents
a running example to illustrate the problems that are tackled. The
main part of the paper – Section 3 and 4 – provides an overview of
the platform used to realize our approach, as well as a presentation
of the approach’s architecture and functionality. We validate our
approach with multiple case studies in Section 5. Section 6 discusses
related work. The paper is finally concluded in section 7, giving an
outlook on future work.

2 PROBLEM ILLUSTRATION
To outline the problems arising with regular consistency checking
and to illustrate our approach, this section discusses a running
example. Consider the following situation: A company would like
to implement the graphical user interface (GUI) of a video streaming
web service. When a user logs into the movie streaming service,
the server displays a catalog of videos to choose from. For our
example, three different engineers are working on three different
workstations, creating three different types of engineering artifacts.

2.1 Initial State
In the spirit of an iterative development, a first implementation has
already been produced and presented – based on a selected, initial
set of requirements. UML models exist that describe basic structure
and scenarios. These artifacts were created by different engineers
over the course of a longer time frame. For simplicity, let us assume
one engineer for each engineering tool:

• John is specifying functional requirements,
• Alex is creating UML models in the form of class and se-
quence diagrams, and
• Alice is implementing the code based on UML models in a
separate Java programming IDE.

The goal is to have all requirements realized in the UML design
and consistently implemented in the code. As all engineers work
concurrently, parts of the requirements, model, and code are stable,
while other parts are still subject to change.

2.2 Subsequent Changes Made by Engineers
The following describes a simple change scenario where the afore-
mentioned engineers adapt their respective artifacts using their
corresponding tools. The first implementation reveals shortcomings
in the connection process to the server. When a user logs in for
the first time, the server should request a language for displaying
the catalog of available movies. The server then sends all textual
descriptions accordingly. John records this request as an additional
requirement. The adjustment of the requirement specification has
direct impact on the UML design of the server. John’s change makes
it necessary for Alex to adapt his UML design. The new process is
illustrated in Figure 1. The framed parts of the sequence diagram are
an addition to the existing design; however, the sequence diagram
is but one scenario that describes the client/server communication
protocoll. As their company is progressive and aware of benefits of
maintaining traceability between requirements and design, Alex
needs to ensure that the changed/added parts of the design are
mapped back to the requirements that motivated them.

Naturally, these design changes imply further changes to the
implementation. Alice needs to adapt her implementation to make
it match John’s new requirement. At the same time, she must be
mindful of Alex’s changes in the sequence diagram. In doing so, the
implementation must ensure simple goals, such as the naming of
Java methods according to UML messages in the sequence diagram
but also more complex goals, such as implementing the client/server
communication protocols, which is described over a number of
sequence diagrams of which Figure 1 is merely a part.

It is easy to see that changes to either requirements, design,
or code can get out-of-sync since each engineer has his/her own
limited views of these artifacts. Obviously, Alice is able to see Alex’s
UML design but how can she be certain that she implemented his
design correctly and completely – while both design and code are
subject to continuing change. Neither the programming tool nor the
design tool will be of much use to her in ensuring this consistency.

2.3 Problem Statement
If changes are not carried through correctly, requirements, design
and code become out-of-sync. In short, they may become incon-
sistent. These inconsistencies are particularly hard to spot if they
relate to artifacts within different engineering tools – whether or
not they are created by the same engineers. Consistency checking
should help engineers in detecting and keeping track of these in-
consistencies. Doing so should not be disruptive to the engineers’
work. Consistency checking should let Alice know that her client’s
setPreference method is out-of-sync because it is missing a request-
Language call or message which does not yet exist.

Due to the limited perspectives of engineering tools, current
state-of-the-art tool-centric consistency checking mechanisms are
not able to detect these inconsistencies. That is, the UML modeling
tool representing the sequence diagram would be aware of Alex’s
addition of the messages and could quickly identify inconsistencies
with other parts of the UML model. However, it could not depict
how Alex’s changes relate to the source code. A document-centric
consistency checker would be able to provide more comprehensive
consistency feedback but its use would be disruptive and certainly

Live and Global Consistency Checking in a Collaborative Engineering Environment SAC ’19, April 8–12, 2019, Limassol, Cyprus

not live and incremental in providing up-to-date inconsistency feed-
back as engineers make changes available. Inconsistencies across
tools may thus go undetected during software and systems engi-
neering. This has several negative implications: 1) the end product
may not correctly implement the new requirement, 2) the code
may be harder to maintain because the UML model no longer doc-
uments the code correctly, and 3) there might be higher costs of
fixing resulting problems [8].

The goal of this work is thus to enable live and global consistency
checking across all artifacts of all tools, to prevent the problems
mentioned above. We intend to achieve this in a way that ensures a
global, uniform view on artifacts, in which said artifacts can be as-
sociated with each other, independent of their origin. Subsequently,
the consistency rules must be writable in a manner that is oblivious
to the syntactic and semantic differences among the engineering
artifacts (i.e., textual source code versus graphical model elements).
Furthermore, the engineer’s tools should be able to integrate incon-
sistency feedback seamlessly.

3 INFRASTRUCTURE
This section discusses the infrastructure of our global consistency
checking approach. There are three major issues to solve in order
to enable global consistency checking. The first issue is the physical
separation of engineering artifacts, which are usually created by
engineers using different tools and located on different machines.
This issue is discussed in Section 3.2. The second issue is about
the incompatible representation languages that different tools use –
while code adheres to a certain programming language, UML may
be represented in the XML format. This issue is discussed in Section
3.2.1. The third issue is about the logical separation that remains
even if the artifacts are represented in the same language. This
issue is discussed in Section 3.3.

3.1 Overview
To overcome these issue, our approach uses the DesignSpace [5]
infrastructure, which provides a central, versioned storage space
for engineering artifacts. It provides a fine-grained, uniform, model
/ metamodel-style artifact representation. The DesignSpace infras-
tructure not only acts as a storage space for engineering artifacts
but it also holds the links that connect engineering artifacts from
different tools. By linking artifacts through a cloud environment
both the problem of physical and logical separation of engineering
information can be overcome. A pre-requisite for linking artifacts
is a syntactic common-ground onto which links can build. This is
achieved through a common uniform artifact representation into
which artifacts are translated. As a result, it is possible to, e.g., link
Java classes with the UML model elements that implement them.
Once links are known, engineers may formulate consistency rules
that define correctness conditions for artifacts from different tools.
These rules could be written by the same engineers using the tools;
though, it is more likely that they are predefined by domain engi-
neers. Once linked in their common representation, engineering
artifacts can furthermore be analyzed and manipulated by services
such as a consistency checker.

An illustration for our global consistency checking mechanism
interlinked with the DesignSpace’s core concepts can be seen in

Figure 2: Basic work principle of Global Consistency Check-
ing within the cloud environment

Figure 2. Engineers are working with their respective tools: Eclipse
for Java and IBM’s Rational Software Architect (RSA1) for UML
models. There are adapters for these tools in order to automate the
mapping of engineering artifacts to the uniform data representa-
tion. Furthermore, adapters automate the synchronization with the
cloud environment. Links and consistency rules can be created and
modified with separate tools. In our case the linking tool directly
modifies the artifacts synchronized with the cloud. With the links
set up our global consistency checking approach then validates
the defined consistency rules. Inconsistencies are shared with the
engineers in the form of network messages from the cloud, which
can be directly fed into the engineers tool through the tool adapter.

3.2 Cloud Environment
Global consistency checking among artifacts of different tools re-
quires live, continuous access to these artifacts. Synchronizing engi-
neering artifacts with a cloud environment enables such access. In
this work, the DesignSpace was chosen as the underlying platform.
The artifact storage in the DesignSpace provides a shared space
that has the following characteristics:
• Uniform Data Representation: To provide a common for-
mat for distinct kinds of engineering artifacts, such as source
code (which is usually textual), or models (which is usu-
ally graphical), the DesignSpace stores data in a uniform
representation.
• Typing: To provide a well-defined language (metamodel)
and language constructs for data, the DesignSpace offers
custom artifact types that can be instantiated dynamically.
• Incremental Live Synchronization: Tools may continu-
ously synchronize changes made by the engineers, ensuring
that the global consistency checker is always up-to-date.
• Conflict Handling: Mutually changed artifacts may stand
in conflict with each other. The DesignSpace provides con-
flict handling strategies for such situations.

1IBM RSA: https://www.ibm.com/developerworks/downloads/r/architect/index.html
(last accessed: 06.12.2018)

SAC ’19, April 8–12, 2019, Limassol, Cyprus Michael Alexander Tröls et al.

The following sections will discuss these characteristics and their
importance to global consistency checking in more detail.

3.2.1 Uniform Data Representation. In the DesignSpace engineer-
ing artifacts (respectively parts thereof) are translated into a uni-
form data representation. The data structure itself is a generic
mapping between keys and values, representing arbitrary proper-
ties of engineering artifacts. The keys are simple strings, while the
values are primitive data types or references to other artifacts. For
example, if we wish to translate a Java class into the uniform data
representation we could use field names as keys and their default
values as values. Something important to note is that such a map-
ping can as well represent links between artifacts, since artifacts
in the uniform data representation carry a unique ID to be identifi-
able. This ID is then simply referenced in the property value. Any
structured data that can be represented in such a manner can, fur-
thermore, be uploaded to the DesignSpace. It should be noted that
in no way our uniform data representation is solely laid out for soft-
ware engineering artifacts. It can as well be used for, e.g., electrical
engineering artifacts. Hence, we do not use notation or terminology
from a specific field. To simplify conversion into the artifact format
the DesignSpace’s API provides appropriate methods. All created
artifacts, respectively their mappings, must correspond to a defined
type. This means that artifacts have a fixed base structure.

3.2.2 Typing. In engineering tools, artifacts are typically defined
through a metamodel. This metamodel defines the structure of an
engineering artifact within its respective engineering tool and often
semantics as well. For example, a Java code contains Java classes
and each class may have an arbitrary number of Java methods.
This conformity to a metamodel is also required by our consistency
checker, which uses the metamodel to custom-tailor consistency
rules for specific kinds of artifacts. Consequently, artifacts synchro-
nized with the DesignSpace are typed. Each type may have a set
of properties, which can again refer to other types or primitive
data types - respectively collections thereof. For example, in Java
there exists a type called Java Class with properties such as name
(of type String) or methods (of collection references to type Java
Method). The type definitions can be created through a seperate
tool or during the first initialization of a corresponding tool adapter
(e.g., an adapter for a programming IDE would first initialize types
for the programming languages it supports. The DesignSpace API
used in tool adapters provides methods to create types in the cloud
environment).

3.2.3 Incremental Live Synchronization. Every tool synchronizing
its engineering artifacts is connected to the cloud via a tool adapter.
The tool adapter – which is ideally implemented as a plugin in
the respective tool – observes the tool’s internal data structure.
When a change happens, it is incrementally synchronized with the
DesignSpace.

For our running example John’s tool adapter creates and in-
stantiates types corresponding to the requirements he wishes to
synchronize with the DesignSpace. The artifact type for require-
ments defines the necessary properties, e.g., requirement name,
requirement ID and description. These types are then instantiated
by the requirements tool adapter, whenever a new requirement is

Figure 3: Exemplary types and instantiations for require-
ments

added. A part of this example is illustrated in Figure 3, where two
instantiations of a requirement artifact type are created.

Types must be uploaded only once. Instances of these types
are uploaded as often as they are found in their respective tools.
As such, there is one requirement type but as many requirement
instances as engineers create. Once artifacts from the tool have
been uploaded to the DesignSpace, changes made on these artifacts
are uploaded incrementally. An incremental change of an artifact
triggers our global consistency mechanism, in order to keep consis-
tency information of the respective artifact up-to-date. The instant
nature of the synchronization process between the tool and cloud
environment, furthermore, enables live checking of artifacts.

3.2.4 Conflict Handling. Engineers mostly do not modify the same
artifacts concurrently. In case mutually overlapping changes exist,
the DesignSpace applies user preferences specifically set for such
situations. Users can either overwrite or ignore changes from other
users. These options can be set for each user individually. Users
could, for example, overwrite their own changes with information
from one user, yet ignore conflicting artifacts from another one,
keeping their own changes intact. In the latter case, the user’s data
would only be complemented by changes that are not in conflict.

3.3 Linking Engineering Artifacts
With data synchronized in a cloud environment, the next issue to
overcome is the logical separation of engineering artifacts. Even
after engineering artifacts are uploaded to the DesignSpace, they
remain semantically separate. The artifacts co-exist but they are not
integrated. Indeed, no such integration is attempted or even needed
by the DesignSpace. Instead, our approach utilizes links between
different artifacts in order to navigate beyond the boundaries of a
single engineering tool. Such links can be captured in various forms.
The current state-of-the-art relies on trace matrices, respectively
defined navigable links between engineering artifacts. Since the

Live and Global Consistency Checking in a Collaborative Engineering Environment SAC ’19, April 8–12, 2019, Limassol, Cyprus

data format is uniform and all artifacts can be linked with each
other, links can be set up between arbitrary artifacts of different
engineering fields, e.g., a code artifact can store links pointing to
a UML diagram representing that code, which in turn can then
point towards a requirements specification, describing the feature
captured in the UML diagram. It should be noted that links can
also be established between the properties of artifacts. As a result
the paramenters of an operation in, e.g., a UML class diagram,
can point to their counterparts in the respective code artifact. In
Figure 4, the link “Affects” respectively “AffectedBy” is defined
within the type of artifacts and established at instantiation, between
requirement, UML sequence and code artifact. Links can be defined
on the artifacts themselves or - with a stricter typing discipline in
mind - as separate artifacts with their own types. Either way, link
artifacts have to adhere to a type definition that can be added onto
existing artifact types. The DesignSpace offers a tool for the creation
of link types as well as their instantiation. The link references two
type artifacts, one as a source, the other as a target of the link. Once
instantiated these link properties must correspond to instances of
the referenced types. Engineers can use this linking tool to create
arbitrary links. Principally, engineers define links manually through
the linking tool. We refer to this as capturing explicit links.

Concerning our running example it may be interesting for John,
which of his requirements affect which parts of Alex’s class dia-
grams. Likewise, Alex may be interested in the Java classes which
are affected by his UML classes. In the type definition of their en-
gineering artifacts they may even introduce a specific property to
save such references, as given in Figure 4. A responsible engineer
could then fill these references manually. Naturally, one could cre-
ate a DesignSpace service software analyzing and manipulating
engineering artifacts to automatically establish links between them
[13]. However, this is beyond the scope of the approach presented
in this paper.

4 GLOBAL CONSISTENCY CHECKING
With artifacts stored and linked in the cloud environment, we can
proceed with checking their consistency. When engineers change
artifacts through their tools, the consistency checker is notified. It
then automatically identifies and validates the changes according
to corresponding consistency rules. These consistency rules are
provided by the users, e.g., a domain expert. The results of the
consistency checker are then returned to the engineers respectively
their tools. The tools may then provide specialized feedback to the
engineers who benefit from the live consistency checking on their
changes. Consistency checking is done in the cloud and engineers
do not have to interrupt their work. Our implementation is sim-
ilar to the incremental consistency checker discussed in [6]. The
key differences are its integration with the unified data structure,
its ability to change arbitrary artifacts, its ability to handle new
types and consistency rules during runtime, and its ability to work
seamlessly with tool artifacts and links.

4.1 Data Structure
Our consistency checker has access to all the information stored
in the DesignSpace infrastructure. All of its internal data is stored

in the cloud as well. Two artifact types build the core of its data
structure:

4.1.1 Rule Definition Artifacts. Rule definition artifacts define con-
sistency rules. A rule consists of a context type and a condition.
• Context Type: The context type of a rule definition is the
type of an artifact to which the rule applies. The rule is then
evaluated for every instance of this type. If, for example, a
user wishes to write a consistency rule for Java classes, the
context type of the rule definition would point towards the
type Java class artifacts.
• Condition: A condition is an OCL-like string, defining a set
of requirements that have to be met by the type instance -
typically a tool artifact. During a rule evaluation the condi-
tion is read and checked. It should be noted, that a condition
can incorporate links between types. This way a rule eval-
uation can navigate to and compare values from different
artifact types. The context type then acts as the starting point
for the navigation.

4.1.2 Rule Evaluation Artifacts. A rule evaluation is the evaluation
of a consistency rule definition on an artifact instance. Recall that
the consistency rule definition defines a context type and the rule
must consequently hold for every instance of that context. A single
rule evaluation is one such check of the rule definition on an in-
stance. Thus, there are as many rule evaluation artifacts as there are
instances of the rule definition context types. The rule evaluation
artifact also contains a scope, which is a list of all artifacts that
affect its consistency. If an artifact changes then all rule evaluations
that contain this artifact in its scope must re-evaluate. The rule
evaluation thus contains these fields:
• Context Instance: A context instance is the starting point
in a rule evaluation. Any artifact can be the instance of a
rule evaluation, but the instance type must correspond to
the type defined in the context of the rule definition. If, for
example, the context type of a rule definition refers to Java
class then the context instances of the corresponding rule
evaluations must refer to instances of Java Class.
• Scope: Rule evaluations store a change impact scope. The
scope of a rule evaluation stores all artifact instances that
affect it. This list is saved for re-evaluations.
• Result: A consistency check either indicates an inconsis-
tency (condition evaluates to false) or consistency. This result
is stored.

4.2 Evaluation Process
Whenever an artifact is created, modified or deleted, the tool adapters
synchronize the change with the DesignSpace. The DesignSpace
notifies the consistency checker, which then processes this change.
In most cases, a change causes a (re-)evaluation of a rule definition
artifact’s condition. In the said evaluation the consistency checker
follows the artifact structure described in the condition, navigating
from a context instance (saved in a rule evaluation artifact) to one
or many literals. These literals are compared according to the con-
dition, resulting in a boolean value, which indicates the consistency
state of the respective rule evaluation artifact. This has to be done
for all artifacts affected by a change. The types of such changes

SAC ’19, April 8–12, 2019, Limassol, Cyprus Michael Alexander Tröls et al.

Figure 4: Three instantiations of three types are linked together via the artifact properties “Affects” respectively “AffectedBy”,
alternatively links can be instantiated in the form of typed instances

(Created, Modified or Deleted), will be discussed individually in the
following.

4.2.1 Artifact Creation (see Algorithm 1). When an artifact is cre-
ated then the notification to the consistency checker contains the
new artifact (its ID). Two scenarios have to be considered:
• A new rule definition was created.
• A tool artifact was created whose type corresponds to exist-
ing rule definition’s context types.

Whenever a new rule definition is created, the consistency checker
has to retrieve all artifact instances that correspond to the defined
context type. For each of these artifact instances, the consistency
checker creates a rule evaluation, with the artifact instance as its
context element. These rule evaluations are then immediately eval-
uated and feedback is sent to the engineers. During the first eval-
uation, the OCL statement is fully parsed and the scope is built,
i.e., a reference to each artifact respectively property that is af-
fected during the evaluation is stored in the rule evaluation artifact.
Later, when an artifact is changed, the consistency checker only
re-evaluates the rules, whose scope contain the said artifact.

If an artifact instance is created whose type corresponds to an
existing rule definition’s context type then a rule evaluation must
be created and evaluated for this artifact instance.
4.2.2 Artifact Modification (see Algorithm 2). If an artifact is mod-
ified, the cloud sends a notification to the consistency checking
service. As a modification is always about a change to an artifact
property, this notification contains the changed artifact instance
(its ID) and property name. If the artifact respectively property is
listed in the scopes of rule evaluations then these rule evaluations
are re-evaluated.
4.2.3 Artifact Deletion (see Algorithm 3). If an artifact is deleted
then the notification to the consistency checker contains the deleted
artifact. Two scenarios have to be considered here:
• An existing rule definition was deleted.
• A tool artifact was deleted which was a context element for
a rule evaluation

Algorithm 1: Artifact Creation
Data:
A = Added artifact
AST = Set of all Artifacts
RD = Set of all Rule Definitions
RDtype = ID of Rule Definition Type
begin

if A.type == RDtype then
C ←− A.contextType
for a ∈ AST do

if a .type == C then
re = createRuleEvaluation
re.setContextInstance(a)
re.setRuleDefinition(A)
evaluate(re)

end
end

else
for rd ∈ RD do

CT ←− RD .contextType
if A.type == CT then

re = createRuleEvaluation
re.setContextInstance(A)
re.setRuleDefinition(RD)
evaluate(re)

end
end

end
end

If a rule definition was deleted, all corresponding rule evaluations
have to be deleted as well. If the context instance of a rule evaluation
was deleted, all rule evaluations carrying this context instance have
to be deleted. If a property of an artifact is deleted the consistency
checking service has to scan the corresponding scopes and set rule
evaluation’s result to invalid. In this case no rule evaluation is
deleted, because the property might be replaced later.

Live and Global Consistency Checking in a Collaborative Engineering Environment SAC ’19, April 8–12, 2019, Limassol, Cyprus

Algorithm 2: Artifact Modification
Data:
ID = ID of modified artifact
RE = Set of Rule Evaluation Artifacts
begin

for re ∈ RE do
S ←− r e .scope
if ID ∈ S then

evaluate(re)
end

end
end

Algorithm 3: Artifact Deletion
Data:
A = Deleted Artifact
RDtype = ID of Rule Definition Type
RE = Set of Rule Evaluation Artifacts
begin

if A.type == RDtype then
for re ∈ RE do

DEF ←− r e .def init ion
if DEF == A then

delete(re)
end

end
else

for re ∈ RE do
CI ←− r e .context Instance
if A == CI then

delete(re)
end

end
end

end

4.3 Inconsistency Feedback
Once a consistency rule has been evaluated, the corresponding
result is stored. The result is also sent to tool adapters in the form
of a notification. The notification also contains the related rule
evaluation artifact, from which further inconsistency information
can be retrieved. The interpretation of inconsistency feedback is
fully up to the user respectively the implementation of the tool
adapter. Depending on the integration of the adapter into the tool,
e.g., in the form of a plugin, the inconsistency feedback could be
visualized through warning messages within the tool. For example,
UML model elements can be marked in a tool’s graphical modeling
editor.

4.4 Example
Coming back to our example from Section 2, let us define the fol-
lowing two consistency rules:
• CR1: Operations in sequence diagrams must be defined as
methods in the corresponding code implementation of a
sequence.

• CR2: Functional requirements must be represented within
the UML design.

In our approach these consistency ruleswould be formalized through
a Rule Definition Artifact. To create such an artifact, the users are
presented with a GUI, in which they can enter an OCL expression
for a certain artifact type. Similar to our Rule Definition Artifact an
OCL rule consists of a context and a condition. The context refers
to the object (in our case artifact) type for which the condition of
the rule must hold.

Consider the artifact structure depicted in Figure 4: To describe
consistency rule CR1, we define the UML lifeline type as the context
(TypeArtifact(ID: 20)). The corresponding condition then compares
two sets, more precisely, the names of outgoing messages from the
lifeline to the names of methods in the affected Java class. Note that
in Section 3.2.2, we mentioned that artifact properties could also
hold collections of values. In this case both message and method
names could be held in a string collection. For all message names
there must be a matching method name. The fully realized consis-
tency rule can be seen in Listing 1.

This consistency rule seems quite simple in principle but it would
not work without links that connect Java method names and UML
messages. In this example, we added explicit links. This is illustrated
in Figure 4 where a requirement artifact is linked with a UML se-
quence artifact, which in turn is linked to an artifact representing
a piece of code implementing the said sequence diagram (via “Af-
fects”). The artifacts are also linked backwards (via “AffectedBy”).
Consistency rule CR1 is thus able to utilize some of these links. It is
important to observe that we utilize the standard OCL language for
defining these consistency rules, because within the DesignSpace
all artifacts including links are properly typed.

context : UML L i f e l i n e
s e l f . MessagesOut−>
f o r a l l (m | s e l f . A f f e c t s . F i e l d s −> e x i s t s (f |
f . name = m. name))

Listing 1: Operations in sequence diagrams must be defined
as methods in the corresponding code implementation of a
sequence (CR1).

context : Requirement
s e l f . A f f e c t s −>notEmpty () implies
s e l f . @type . F i e l d s −> e x i s t s (f |
f . F ie ldName = ' Af f e c t s ' and
f . F i e l dType = s e l f . A f f e c t s . @type . @super)

Listing 2: Requirements must be represented within the
UML design (CR2).

Consistency Rule CR2 is handled in a similar fashion. To describe
consistency rule CR2, we define the Requirement Type as the con-
text (TypeArtifact(ID: 25)). The corresponding condition utilizes
the “Affects” link, making sure that it points towards an artifact.
The condition could also be extended to ensure that the target of
the “Affects” link corresponds to the right type - in this case a UML
lifeline (ID: 20). In that regard, consistency rules can also cover
basic well-formedness checks. One thing to consider here is, that
requirements might affect several UML elements. So, if specified, we
may want to check the super type (UML diagram) of UML Lifeline
instead. On the requirements side we now need a value to compare

SAC ’19, April 8–12, 2019, Limassol, Cyprus Michael Alexander Tröls et al.

this type to. Mind that the type of a field can be specified in the
field definitions of an artifact (see Figure 3; e.g., the field “Name”
is of type string, while the requirement ID is an integer). This can
be utilized as a comparative value in our rule’s condition, if the
aforementioned super type (UML diagram) is specified as the type
of the “Affects” field (remember that types can be linked to other
types and, therefore, reference them as type for their fields). The
fully realized consistency rule can be seen in Listing 2.

With the consistency rules defined and set up as Rule Definition
Artifacts within the cloud, the adaptions made by engineers (see
Section 2.2) can take effect:

The first adjustment is John recording an additional require-
ment in his requirements tool. Like all tools in this example, John’s
tool is incrementally synchronized with the cloud environment
(see Section 3.2.3). This means, whenever he adds a requirement
in the GUI of his tool, an artifact of the type “requirement” (see
Figure 3 respectively Section 3.2.2) is automatically instantiated
in the cloud. This action triggers the consistency checker’s “Arti-
fact Creation” algorithm (see Algorithm 1) through a notification,
since the “Requirement” type is a context in a rule definition (see
Listing 2). Subsequently the consistency checker will create a new
Rule Evaluation artifact, with the newly instantiated requirement
artifact as context element. This Rule Evaluation artifact will be
evaluated immediately. Since the requirement is completely new
and not yet represented within the UML design, the result of the
consistency check will indicate an inconsistency and consistency
rule CR2 as broken. This is reported to John through the GUI of his
synchronized tool, e.g., by marking the corresponding requirement
in an overview.

On Alex’s side, the new requirement makes it necessary to adapt
his UML Design. In his synchronized UML tool he adds the new
lifeline “Language Loader” to an existing sequence diagram (see
Figure 1). This triggers the instantiation of a new artifact of type
“lifeline” (see Figure 4). A new Rule Evaluation artifact is created,
with the said “lifeline” artifact as the context element. The corre-
sponding Rule Definition artifact represents consistency rule CR1.
The rule is evaluated immediately and the result indicates that con-
sistency rule CR1 is broken. Through the cloud’s linking tool (see
Section 3.3) Alex, or a dedicated domain engineer, can now link the
newly instantiated lifeline artifact to the requirement. This results
in an update to both the lifeline and the requirement artifact, which
triggers the consistency checkers “Artifact Modification” algorithm
(see Algorithm 2) and a re-evaluation of the respective rule eval-
uation artifacts. This time consistency rule CR2 will hold, since
Alex linked the requirement artifact’s “Affects” link, respectively
the “AffectedBy” link on the lifeline artifact (see Figure 4). This
information will also be propagated to John’s tool, whose GUI now
marks the requirement as consistent. However, the evaluation of
consistency rule CR1 will still fail and the according GUI elements
(the lifeline, respectively its operations) in Alex’s UML tool will be
marked as inconsistent.

The final changes need to be made by Alice. She implements the
new requirement in the code, respecting the design laid out by Alex.
To ensure this she links the newly instantiated class artifacts (see
again Figure 4) with Alex’s lifeline artifact. This update triggers the
consistency checker’s “Artifact Modification” algorithm and causes
the re-evaluation of the lifeline artifact, making sure that Alice’s

methods are the same as the operations in the sequence diagram.
Since the lifeline artifact is now correctly linked, consistency rule
CR1 will hold as well. This information is also propagated to John’s
tool, removing the inconsistency warnings from its GUI elements.
With this, all rules hold and the state of the project is consistent.

5 VALIDATION
To demonstrate the feasibility of our approach, this section covers
a listing of various tool adapters, validating its applicability within
a diverse range of engineering projects. Furthermore, this section
validates both the scalability and the usability of our global consis-
tency checking approach, on the basis of an empirical study and
two case studies.

5.1 Existing Tool Adapters
Currently, the DesignSpace offers multiple tool adapters. These tool
adapters demonstrate the wide range of engineering artifacts the
DesignSpace can handle, as well as the adaptability of its API to
several different programming languages and engineering domains.

Tool adapters have been written for software engineering tools
(e.g., Eclipse, RSA and Papyrus), electrical engineering tools (e.g.,
EPlan Electric P8 [3][7] and PTC Creo [7]), as well as for com-
mon purpose tools (e.g., Microsoft Excel and Visio). All of these
tools produce very different engineering artifacts, including Java
code, UML models, electrical models, CAD drawings, data tables
and regular diagrams. Engineering artifacts synchronized with the
DesignSpace adhere to different metamodels. Among others these
include various tool-internal metamodels (EPlan and Creo), the
Ecore metamodel and extensions thereof (Papyrus and RSA) as well
as the Java metamodel. These metamodels, or parts thereof, are
synchronized with the DesignSpace as well. Tool Adapters have
been written in Java, C# and C++. Thanks to the adaptability of the
DesignSpace API the range of potential tool adapter languages can
easily be extended.

5.2 Links
In previous applications of the DesignSpace several different types
of engineering artifacts have been linked together. For example,
EPlan artifacts have been linked to Java code [3] and Creo CAD
hardware components - respectively geometric shapes - have been
linked to UML elements [7]. Note that these are very different engi-
neering artifacts, coming from different engineering domains. Their
linking acts as a proof of concept, that the semantic gap between en-
gineering artifacts can be bridged with the help of the DesignSpace.
Furthermore, this work demonstrated how requirements could be
linked to UML elements and in turn to Java code.

5.3 Empirical Study
Our approach was applied to ten projects within a lab experiment to
validate its computational scalability. An overview of these projects
can be found in Table 1. The projects consisted of both UML models
and code. UML Models were made up of class diagrams as well as
sequence diagrams and state charts. While the column #Evaluations
describes the number of Rule Evaluations, the columns #CodeEle-
ments and #ModelElements describe the size of model and code
respectively. Projects ranged from small, like an implementation

Live and Global Consistency Checking in a Collaborative Engineering Environment SAC ’19, April 8–12, 2019, Limassol, Cyprus

Figure 5: Comparison of total processing time

Project Name Cl
as
s

Se
qu

en
ce

St
at
ec
ha
rt

#M
od

el
El
em

en
ts

#C
od

e
El
em

en
ts

#E
va
lu
at
io
ns

PR01 GameOfLife x x x 286 261 148
PR02 Checkers x x 425 342 171
PR03 TestService x x x 397 302 268
PR04 SMTSolver x x 1,254 2,021 791
PR05 ATMExample x x 1,341 1,550 983
PR06 TaxiSystem x x 1,930 3,488 1,318
PR07 VOD3 x x 2,538 3,613 1,534
PR08 ObstacleRace x x 1,992 3,555 1,600
PR09 biter x 2,648 4,015 1,957
PR10 ArgoUML x 6,039 19,557 3,827

Table 1: Case study projects

of the “Game of Life"[12], to big multi-developer projects like the
ArgoUML tool2. The evaluation was based on 14 consistency rules,
which can be found in [19].

We validated the computational scalability of our approach by
systematically applying changes to all elements of our projects and
by capturing the time required to re-evaluate all rule evaluation
artifacts. We ensured that each element present in the scope of
a rule evaluation artifact was changed. Mean and median times
were observed and used for our analysis. Figure 5 shows the mean
processing time per affected rule evaluation artifact. The mean
observed processing time was 10.7 ms, while the median was 8.8
ms. The total processing time remain below 50 ms on average,
which is an acceptable time for tool users [17].
5.4 Case Studies
Our approach was validated on the basis of two case studies. One
was performed with the help of the Austrian Center of Competence
in Mechatronics (ACCM3), another with the Flander’s Mechatron-
ics Technology Center (FMTC4). These case studies suggest the
usability of our approach.

5.4.1 ACCM Robot Arm. This case study provides a live global
consistency checking for the design, mechanical calculation and
partial implementation of a robot arm [7]. Engineering artifacts
involved were Excel sheets, CAD drawings, UML models based on
2ArgoUML: http://www.argouml.tigris.org/ (last accessed: 06.12.2018)
3ACCM/LCM: https://www.lcm.at/ (last accessed: 06.12.2018)
4FMTC: http://www.flandersmake.be/en (last accessed: 06.12.2018)

IBM RSA and source code written in the Eclipse IDE. For explicit
linking, the case study’s implementation also provides the ability
to define and check traceability links between different involved
engineering artifacts.

5.4.2 FMTC. This case study provides live global consistency check-
ing between electrical circuit diagrams as well as an implementation
[3]. The artifacts involved were EPLAN Electric P8 drawings as
well as source code. Both were provided by a third-party company.

5.5 Threats to Validity
Our empirical validation confirms that the approach presented in
this paper is feasible within a real world environment. All projects
were created by different groups of developers and companies. Both
project sizes and domains were highly diverse.

One threat to validity is the effort required to implement and set
up tool adapters. Both our case studies and the amount of exemplary
tool adapters illustrate, that the integration of engineering artifacts
can be completed with a reasonable amount of effort. Furthermore,
the granularity of the data integration is fully up to the tool adapter
implementation, meaning that even subsets of an engineering arti-
fact’s data can be synchronized with the DesignSpace.

Another threat to validity is the correctness and completeness
of links connecting engineering artifacts. Since all links are defined
by engineers - either explicitly in the form of artifacts or implicitly
in the form of consistency rules - link completeness is dependent
on the engineers’ assessment of their respective projects. This is
also true for the link correctness. Likewise the completeness of
consistency rules depends on the necessity implied by the devel-
opment project and its developers. To ensure syntactically correct
consistency rules, our approach checks the syntax of a condition
and the validity of the context type during the creation of a Rule
Definition artifact.

6 RELATEDWORK
Currently a multitude of consistency checking mechanisms exists
(e.g., [10][11][18]). In practice, consistency checking mechanisms
are either integrated into standalone tools (very common with
UML modeling tools) or executed on documents (very commonly
XML). While the consistency checking mechanisms for standalone
tools tend to be agile and support live, often instant inconsistency
feedback with changes, their consistency checking is limited to
the kinds of artifacts available within the tool. Document-centric
consistency checking approaches let engineers combine artifacts
from multiple tools and hence support global consistenc checking;
however, at the expense of agility. Document-centric approaches
are not change driven and hence expensive and disruptive to use.
In all cases, consistency checking mechanisms require a single,
well-defined metamodel. For example, the consistency of a UML
modeling tool is checked within the context of the UML meta-
model or the consistency of a Java programming environment is
checked within the context of the Java metamodel. Similiarly, the
consistency of a merged document is checked within the context of
that document’s grammar (e.g., XMIs in case of XML documents).
Nonetheless, the limitations of all mechanisms are always the same.
Every approach today 1) either focuses on the limited knowledge

SAC ’19, April 8–12, 2019, Limassol, Cyprus Michael Alexander Tröls et al.

available within their respective engineering tools (even if the tech-
nology is applied to different engineering tools, each tool has a
limited perspective) and/or 2) they are potentially able to merge
artifacts from different tools but this requires explicit integration,
merging effort and is far from instant (i.e., all engineers involved
need to agree on some timing when to export and merge knowl-
edge). There are only very few approaches that attempt live, global
multi-tool consistency checking. These are discussed next.

One document based approach is ArchJava, developed by Aldrich
et al. [1]. It couples an architecture description language with im-
plementation code. For this it utilizes an extended version of Java,
featuring a unique type system that guarantees communication
integrity between the code and the architecture. Archface [20] acts
as both a programming-level interface as well as an architectural
description language. It relies on architectural constraints within
the implementation to realize traceability. Likewise, DiaSpec [2]
uses an architectural description language to describe allowed in-
teractions between components. Inconsistencies are detected with
the help of the Java compiler. The problem of ArchJava, Archface
and DiaSpec are the limitation to a specific programming language,
respectively its compiler. Our approach relies on a generic data
format into which a multitude of different engineering artifacts can
be translated. Another document based approach is discussed by
Nentwich et al. [16]. It generates links between distributed XML-
based web artifacts and checks their consistency. In contrast our
approach is not based on distributed documents but centralized
engineering artifacts. This removes the network communication
delay from the consistency checker’s processing time. Furthermore,
our approach delivers live consistency feedback to engineers.

Koenig et al. [14] presented an approach that is closer to the
ideals of global consistency checking. This approach allows hetero-
geneous multimodels to be analyzed as locally as possible by only
comparing model elements relevant to a global constraint. Doing
so, significantly reduces the effort required for model matching
respectively merging. TReMer+ [15] is a tool for model merging
and global consistency checking. It includes merging operations
for requirements, behavior models, design and implementation.
Both Koenig et al. [14] and TReMer+ [15] rely on partial merging
respectively the comparison of metamodels. Our approach relies
on links between engineering artifacts, which act as a lightweight
alternative to model merging.

Finally, Egyed et al. [7] as well as Demuth et al. [3][4][5] cov-
ered certain aspects of live, global consistency checking but with
key differences. The solution proposed by Demuth et al. [5] alike
ArchJava or DiaSpec provided a solution where Eclipse was used to
represent both model and code. Egyed et al. [7] already introduced
a cloud to provide a central place of artifact storage with a uniform
representation. However, this paper focused on reducing the mem-
ory and computational footprint of checking the same consistency
rules separately for each tool. Our approach checks the rules once
centrally and then makes the results available to all relevant tools.
Finally, Demuth et al. [3] reports on an industrial application of
their proposed approach in the form of an experience report. The
experience report focused primariliy on the need for live, global
consistency checking and how a cloud could support it. However,
that approach required engineers to be aware of the cloud, whereas

our approach is able to effectively hide the existence of the cloud,
such that engineers remain mostly unaware of it.

7 CONCLUSION
This paper discusses a novel approach towards live global consis-
tency checking, with the help of an engineering cloud environment.
It presents the functionality and architecture of the consistency
checking mechanism and demonstrates its feasibility with two in-
dustrial case studies. The approach uses the DesignSpace as a cloud
environment. In future, the consistency checking mechanism will
be adapted to consider private views, respectively different versions
of engineering artifacts. We will investigate a way to compute con-
sistency checking information for differently versioned artifacts,
including those that might be in conflict with those of other private
views.Wewill also analyse how the results of rule evaluations could
be provided to users in a helpful manner (e.g., through mutable
pop-up warnings integrated in tool adapters).

REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin. 2002. Architectural reasoning Archjava.

ECOOP (2002), 334–367.
[2] D. Cassou, E. Balland, C. Consel, and J. Lawall. 2011. Leveraging Software

Architectures to Guide and Verify the Development of Sense/Compute/Control
Applications. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11). ACM, New York, NY, USA, 431–440.

[3] A. Demuth, R. Kretschmer, A. Egyed, and D. Maes. 2016. Introducing Traceability
and Consistency Checking for Change Impact Analysis across Engineering Tools
in an Automation Solution Company: An Experience Report. 32nd International
Conference on Software Maintenance and Evolution (2016), 529–538.

[4] A. Demuth,M. Riedl-Ehrenleitner, and A. Egyed. 2016. Efficient detection of incon-
sistencies in a multi-developer engineering environment. In 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE). 590–601.

[5] A. Demuth, M. Riedl-Ehrenleitner, A. Noehrer, P. Hehenberger, K. Zeman, and
A. Egyed. 2015. DesignSpace - An Infrastructure for Multi-User/Multi-Tool
Engineering. (2015), 1486–1491.

[6] A. Egyed. 2011. Automatically Detecting and Tracking Inconsistencies in Software
Design Models. IEEE Transactions on Software Engineering 37, 2 (2011), 188–204.

[7] A. Egyed, K. Zeman, P. Hehenberger, and A. Demuth. 2018. Maintaining Consis-
tency across Engineering Artifacts. IEEE Computer (2018), 28 – 35.

[8] M. Fagan. 1976. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal (1976), 182 – 211.

[9] A. Finkelstein. 2000. A Foolish Consistency: Technical Challenges in Consistency
Management. In Database and Expert Systems Applications, Mohamed Ibrahim,
Josef Küng, and Norman Revell (Eds.). Springer Berlin Heidelberg, 1–5.

[10] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. 1994.
Inconsistency Handling in Multiperspective Specifications. IEEE Trans. Softw.
Eng. 20, 8 (Aug. 1994), 569–578.

[11] P. Fradet, D. Le Métayer, and M. Périn. 1999. Consistency Checking for Multiple
View Software Architectures. SIGSOFT Softw. Eng. Notes 24, 6 (1999), 410–428.

[12] M. Gardner. 1970. The fantastic combinations of John Conway’s new solitaire
game "life". Scientific American 223 (1970), 120–123.

[13] A. Ghabi and A. Egyed. 2012. Exploiting Traceability Uncertainty between
Architectural Models and Code. In 2012 Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on Software Architecture. 171–180.

[14] H. Koenig and Z. Diskin. 2016. Advanced Local Checking of Global Consistency
in Heterogeneous Multimodeling. ECMFA (2016), 19–35.

[15] Sabetzadeh M., Nejati S., and Easterbrook S. 2008. Global consistency checking
of distributed models with TReMer+. ICSE08 (2008), 815–818.

[16] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelsteiin. 2002. Xlinkit: A
Consistency Checking and Smart Link Generation Service. ACM Trans. Internet
Technol. 2, 2 (May 2002), 151–185.

[17] J. Nielsen. 1993. Usability Engineering. (1993).
[18] S. Reiss. 2006. Incremental Maintenance of Software Artifacts. IEEE Transactions

on Software Engineering 32 (10 2006), 682–697.
[19] M. Riedl-Ehrenleitner. 2013. Model-and-Code Consistency Checking. Master’s

thesis. Johannes Kepler University.
[20] N. Ubayashi, J. Nomura, and T. Tamai. 2010. Archface: A contract place where

architectural design and code meet together. 2010 ACM/IEEE 32nd International
Conference on Software Engineering 1 (01 2010), 75–84.

	Abstract
	1 Introduction
	2 Problem Illustration
	2.1 Initial State
	2.2 Subsequent Changes Made by Engineers
	2.3 Problem Statement

	3 Infrastructure
	3.1 Overview
	3.2 Cloud Environment
	3.3 Linking Engineering Artifacts

	4 Global Consistency Checking
	4.1 Data Structure
	4.2 Evaluation Process
	4.3 Inconsistency Feedback
	4.4 Example

	5 Validation
	5.1 Existing Tool Adapters
	5.2 Links
	5.3 Empirical Study
	5.4 Case Studies
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

